

6xHis-CHIP Cat. # K1200,K1201

Also Known as:	STUB1; UBOX1; HSPABP2; NY-CO-7; SDCCAG7
NCBI Reference:	NM_005861
MW (no tag):	34.9 kDa
Species:	Human
Source:	Bacterial recombinant
Tag:	6xHis
Stock Buffer:	20 mM Tris, 150 mM NaCl, 2 mM βME, 10% Glycerol
Concentration:	See tube label
Quality Assurance:	~95% by SDS-PAGE

Image

Coomassie-stained SDS-PAGE Lane 1: Molecular weight markers Lane 2: 5 μg purified 6xHis-CHIP

Description:	The carboxyl terminus of Hsc70-interacting protein (CHIP) is an E3 ubiquitin ligase. CHIP contains two domains, one is its TPR domain on the amino terminus and the other is its U-box domain on the carboxyl terminus. The TPR domain recognizes the chaperones, Hsp70 and Hsp90. While the U-box domain carries out its ubiquitin ligase activity. CHIP often ubiquitinates misfolded proteins bound on the chaperones.
Storage: Note: Literature:	Store at -80°C; avoid multiple freeze-thaw cycles N/A 1. Ballinger CA, <i>et al.</i> (1999) Mol Cell Biol 19(6), 4535 – 4545.
	2. Murata S <i>, et al</i> . (2003) Int J Biochem Cell Biol 35(5), 572 – 578.