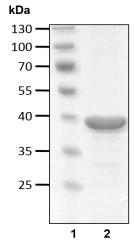


6xHis-Non-cleavable Linear Ub₄

Cat. # D4430

Species: Human

Source: Bacterial recombinant


Tag: No

Stock Buffer: 20 mM Tris, 150 mM NaCl, 2 mM βME, 10% Glycerol

Concentration: See tube label

Quality Assurance: ~ 85% by SDS-PAGE

Image

Coomassie-stained SDS-PAGE

Lane 1: Molecular weight markers

Lane 2: 5 μg purified 6xHis-Non-cleavable Linear Ub₄

Description:

Ub chains are formed by conjugating the C-terminal glycine residue of Ub onto any of seven internal lysine residues or the amino group of the previous Ub. Ub chains are classified by the lysine residue used to link Ubs; different Ub chain topologies can result in different signals. For instance, Ub chains linked through lysine 6, 11, 27, 29, 33 and 48 are capable of targeting proteins for proteasomal degradation; in contrast, Ub chains linked through lysine 63 or the N-terminal amino group (linear Ub chains) often play important nonproteolytic functions including regulation of kinase activation and protein translation.

6xHis-non-cleavable linear Ub4 contains a 3XHA tag followed by a TEV cleavage site after the 6xHis tag. The G76V substitution was introduced in the first five Ub moieties and the last Ub has G76. The protein was expressed in E. coli and purified by Ni-NTA resin followed by an anion exchange chromotagropy.

Storage: Store at -80°C; avoid multiple freeze-thaw cycles

Note: Ub chains, especially K63-linked ones, often form soluble aggregates even storing at -80°C. If

necessary, urea powder can be added into the stock solution up to 3 M, then keep the stock solution at room temperature for 30 minutes. This treatment has no effect on Ub chain

structure, but breaks soluble Ub chain aggregates.

Literature:

- 1. Hershko A, et al. (1980) Proc Natl Acad Sci USA 77(4), 1783 1786.
- 2. Pickart CM, (1997) FASEB 11(13), 1055 1066.
- 3. Hershko A, et al. (1998) Ann Rev Biochem 67, 425 479.
- 4. Jiang X, et al. (2012) Nature Reviews Immunology 12, 35 48.

